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is extremely diverse
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Goal: Better understan

|| relationships of trees by quantifying drivers of tree-level traits for
. improved characterization of biodiversity.

1) Develop global TLS database and extract 3D traits.
! 2) Validate and test allometry and scaling theories.
. 3) Link scaling relationships to environmental conditions.
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We have assembled a
global dataset

Datetime § Instrument % Protocol
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1st year grew by 106 TLS plots to 1108!
A c 57 members (47 with TLS data) and 40 institutions have joined
Universty  BE-HLTS Manuscript in-prep introducing TLS database
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Separating trees into Leaf and Wood







Woody structure for archltectural tralts
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Tree-level Structural _ Crown diameter
Biodiversity Traits (SBTs) / o \ \\
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We are developing a standardized processing framework for all Co-Is,
Collaborators, and GTLS members to apply
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2) We are beginning to validate local and national-scale
allometry at study sites in the GTLS database.

2] Predicted 2/3 slope 2 5| Predicted 3/8 slope
. a = 0.354
se=0.003

Test metabolic
scaling theories

s (ongoing)

log Volume (m°)

(kg)

Validate Local and National
Allometric Relationships

(ongoing)

Aboveground Biomass

Stovall et al. 2022 (Methods in Ecology and Evolution)



Link scaling relationships to environmental conditions.

—— Environmental Drivers —
Trees @ 200 @ 400 @ o0

Temperature Water Light N & P Competition
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What environmental factors control leaf angle?
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3 manuscripts focusing on leaf =
@ g (degrees) Os
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Stovall AEL,..FatoyinboL, Yang X (2021) New Sensitivity of [A] canopy and [B] understory leaf angle mode (the most commonly observed leaf angle) to seasonal

Phytologist.doi:10.1111/n ph.17548 shiftsin plantarea index (PAl), photosynthetically active radiation (PAR), and solar inclination angle (6_s).

YangX, Li R, Jablonski A, et al (2023) Ecology . .
ettore: 40010 1111 felo 14215 Stovall et al. Submitted to New Phytologist



https://doi.org/10.1111/nph.17548
https://doi.org/10.1111/ele.14215

For more, chat with us at the poster session!
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Leaves and wood are Table 1: 3D architecture structural biodiversity traits we will investigate to improve scaling theory.
classified, and trees are £ P Structural Biodiversity Traits Description
prepared for extraction |2 Sy Sl i) Top-heaviness
of 3D biod |verS|ty traits. o o4 % o Aspect ratio Ratio of maximum crown widith to crown height

1 ol "b’; . o R A Relative Crown Width Ratio of maximum crown widith to tree height
& gt % 2 Crown Area Maximum ground area covered by the crown viewed from above

Leaf Area Total tree leaf area
Crown Density Ratio of crown area to woody volume in the crown
Mass Taper Exponent Exponent of a power law fit to the vertical profile of volume
Path Fraction Ratio of mean to maximum base-to-twig path length
Crown Asymmetry The ratio of maximum to mean of 8 angular crown segments
Branching Angle The average angle between two cylinders at each branching point

Ratio of total woody volume in the crown to the stem woody volume

Predicted 2/3 slope Predicted 3/8 slope
o ) . a=0.680 - 354
3D biodiversity traits | =00

help us understand
scaling in trees

log D8H (em) 1og Voluma ()

How does environment control
scaling relationships?

Trees are isolated with 3 ) butions fro N &

1 international — Environmental Drivers —
collaborators are
making the TLS
database grow!

automatic extraction

Light Competition
Acer I =

from Wytham, W

Eucalyptus microcarea,

nj
oods, UK from Victoria, Australia
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. Habitat research
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Year One

We focused on six of our nine tasks during the first year of our project,

cepparp  JPL =

including planning field data collection, prediction of plant function ;
¢ s ¢ $ g minary o . —— g ; -

types, calculating spectral diversity and dimensionality, hding to ; < i Figute 3. a. PFT map of Verlorenvlei for 2003 mapped with Quickbird data. b. A map of Verlor

g 5 A 2 3 & = change estimates for Kr pped with World diagram of ¢ om 2003-202 nlified to foit ¢

space-borne data, time series analysis, and predicting climate pped il diagram of b rom 2003-2021 simplified to four cle

2 Langbaan and a denser time er, upland, and barren. Panel ¢, demonstrates the are ec
si.oF. Plant Fisiction o series for Verlorenvlei. Our - _— .
change analysis of Verlorenvlei e . 20031 -

d estuarine plant functional type communities across the tidal
demonstrates loss in water over

tilized high spatial resolution satellite data from Worl
) e o S ars from 1086 ha to 119 ha
we highlight tl uary (Figure 1). In Kaysna, w
< . - s A major drop in water

mapped 366.5 ha of Zostera (Fig. 1c), a very similar amount of Zostera as

previous estimates from the 2000, i.e., 350-390 ha (Barnes and Elwood
2012). When repeating our classification for earlier years, we found that a

higher tidal stage and turbidity made mapping Zostera extent impossible (Fig, 2
: S trends for climate variables which

la-b). However, the low marsh plant functional community was still .
will be u » model the future

mappable, though darkening was evident (Fig 1. a-b -

= = o of these systems along with
and nndexlying data in psex or December 2011 (a and ¢) and s
mber 2021 (b and d). a and c rep

}I’I IW and b

approximately 1.5 m above
2 changes are resulting in shifts to

the marsh PFTs and risk

biodiversity loss.

Planning - Field data collecti

Our exploration of the

spaceborne data streams and data fusion between lidar and space-borne spectros

demonstrates that the BioSCapes aerial campaign will offer unique data to improve classification and answer our overarching

hypotheses surrounding biodiversity across the estuarine gradient. We plan to use these maps to inform field data collection. Tidal

stage exploration demonstrates the potential impacts on extent mapping but can be quantified and controlled for with repeat high-

resolution data mapping
Figute 4.a An example of a hig] stage in the Knysna estuary re: 2 in a similag el )
corresponding with »ss all the plant functional communities. b. - tidal s
stexa is inundated but other tidal cc e exposed.
examine how our classifications

relate to elevation and tides using the

In Kaysna, w
explored the s : . i At u Lower
sepacability of our propos: 30 dii‘abiove

PFTs with EnMap at 30 m
spatial resolution (Fig. 1)

MLLW), in this case, we can
differentiate between the ground
We further analyzed how \ _ o [ our PFTs (Fj

these classes relate to

el tion and expect LVIS

or other elevation data to

elevation analysis also demonstrates
that near MLLW tidal st: 1s
necessary to map the exposed
improve the classification seagrass extent

Bames, RS K and Ebvood, WLD.F. 2012 Spatis varason in he macrobesihic assembioges of

Tuesday and Thursday
Afternoon

Verlorenvlei change (2003-2021)
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We look forward to more!
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